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Exact relationship for third-order structure functions in helical flows
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An exact law for turbulent flows is written for third-order structure functions taking into account the
invariance of helicity, a law akin to the so-called ‘‘4/5 law’’ of Kolmogorov. Here, the flow is assumed to be
homogeneous, incompressible and isotropic but not invariant under reflectional symmetry. Our result is con-
sistent with the derivation by O. Chkhetiani@JETP Lett.10, 808,~1996!# of the von Kármán–Howarth equation
in the helical case, leading to a linear scaling relation for the third-order velocity correlation function. The
alternative relation of the Kolmogorov type we derive here is written in terms of mixed structure functions
involving combinations of differences of all components for both the velocity and vorticity fields. This rela-
tionship could prove to be a stringent test for the measuring of vorticity in the laboratory, and provide a
supplementary tool for the study of the properties of helical flows.

PACS number~s!: 47.27.Gs, 47.27.Jv
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I. INTRODUCTION

Turbulence, as studied in the laboratory and as obse
in geophysical and astrophysical flows, resists analysis, c
trary to critical phenomena where anomalous exponent
scaling laws can be computed using the renormaliza
group approach. In the context of intermittency, howev
recent progress has been made for passive scalars@1# and
passive vectors for the kinematic dynamo in magnetohyd
dynamics~MHD! @2#; in both cases, the scaling exponents
structure functions~defined below! can be computed pertur
batively for specified forcing and velocity statistics.

Thus, for the fully nonlinear problem of a turbulent v
locity field, experimental and numerical investigations,
well as phenomenological models, still play a prevalent ro
However, there are also exact laws, namely the so-ca
‘‘4/5’’ law of Kolmogorov @3# and the equivalent relation@4#
involving a functional of the total energy, advected by t
longitudinal velocity incrementduL ~see below!. Both laws
show that the third-order structure functions of the veloc
obey linear scaling relationships in the inertial range wh
self-similarity holds. The latter law writes

^duL~r !@dui~r !#2&52
4

3
ēr ~1!

~where summation over repeated indices will be underst
throughout the paper!; ē52ĖV is the kinetic energy injec-
tion ~and transfer! rate with EV5 1

2 ^u2&. We hereafter call
Eq. ~1! the ‘‘4/3’’ law; it obtains rigorously from the Navier-
Stokes equation written in terms of averages for veloc
increments

dui~r ![ui~x1r !2ui~x!, ~2!

assuming homogeneity, isotropy, stationarity, and inco
pressibility. One further concentrates on the inertial range
turbulent flows where the dissipative terms can be neglec
The 4/3 law can also be derived starting from the 4/5 law
Kolmogorov which reads
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3~r !&52

4

5
ēr ; ~3!

duL(r ) is the longitudinal component of velocity difference
with duL(r )[@u(x1r )2u(x)#• r̂ and r̂5r /r . Hereafter, the
subscriptL denotes components of the field along the se
ration r ; similarly, n stands for any of its two transvers
components, whereas the indices (2,3) are used when
needs to differentiate between these two transverse com
nents. Indeed, starting from Eq.~3! and using the differentia
relationship between the fully longitudinal component of t
velocity third-order structure function, and its mixe
longitudinal-transverse component, stemming from
incompressibility condition, viz, 6̂duL(r )dun

2(r )&
5]@r ^duL

3(r )&#/]r , one arrives easily at Eq.~1!, in the case
of the full isotropy assumption.

The above exact laws derive from the conservation
energy in the absence of dissipation. Another invariant of
inviscid fluid equations is the kinetic helicity@5#:

HV5
1

2
^u•v&, ~4!

wherev5“3u is the vorticity. This invariance is of a to
pological nature, dealing with the knottedness of vortex lin
@5#. The role of helicity has been reviewed in@6#. For mag-
netized fluids, helicity is known to be important in the larg
scale dynamo problem@7#, and is also invoked in the stud
of solar flares and coronal mass ejection; in neutral fluids
slows the dynamics as exemplified in@8#, and it also plays a
role in the evolution of hurricanes. Indeed, when helicity
maximal, as measured by the ratior̃5^u•v&/A^u2&^v2&,
with ur̃u<1, and with a maximal state forur̃u51, the non-
linear terms of the Navier-Stokes equations cancel exa
except for pressure. Note that such Beltrami flows withu5

6 l̃ 0v @9# are unstable~see, for example,@10#!. More re-
cently, the role of helicity was also studied in@11# in the
context of drag reduction@12#. Thus, the purpose of this
paper is to derive an exact law concerning third-orderstruc-
5321 ©2000 The American Physical Society
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ture functionsfor helical flows, taking into account the pre
ence of this second invariant, namely helicity. Chketiani@13#
derived the von Ka´rmán–Howarth equation for the helica
case and deduced a linear scaling law for third-order co
lation function of the velocity. Our work was done indepe
dently of the derivation in@13#, and we use a different route
namely that of Antoniaet al. @4#, dealing directly with the
temporal evolution of structure functions. Such functio
built on powers of the increments of the field componen
are particularly useful in the study of turbulent flows becau
they allow for an elimination of the effect of large-scale m
tion such as sweeping: dealing with velocity differenc
they stress the~presumably universal! small-scale statistica
properties of such flows.

II. KINEMATICS OF HELICAL FLOWS

The first steps of our derivation are of a kinematical n
ture. With helicity, the structure of tensors differs from th
in the full isotropic case. For example, a third-order ten
can no longer be assumed to be symmetric in its first
indices; indeed, the equation for helicity involves cross c
relations between the velocity and the vorticity.

We begin with the second-order energy tensorRi j (r )
which, assuming homogeneity and skew isotropy, can
written as@14#

^ui~x!uj~x8!&5F~r !r i r j1G~r !d i j 1H̃~r !e i jk r k , ~5!

wherex8[x1r ande i jk is the unit alternating tensor. Helic
ity is included through the term proportional toH̃(r ), a pseu-
doscalar@15#. Using incompressibility@i.e. ,]Ri j (r )/]r i50#,
it is well known that in the helical case, two defining fun
tions remain, linked to energy and helicity. Hence, one c
also write@14#

Ri j ~r !/ū25 f ~r !d i j 1
r f 8~r !

2
Pi j ~r !1e i jk~r k /r !g̃~r !, ~6!

where a prime symbol in a function denotes a derivative w
respect tor; as usualPi j (r )5d i j 2(r i r j )/r

2 is the incom-
pressibility projector, ū2f (r ) the longitudinal correlation
function of the velocity withū25 1

3 ^u2&; one also introduces
a new functiong̃(r ) with

R23~r !5rH̃ ~r !e23L[ū2e23Lg̃~r !.

A similar definition holds for the helicity tensor, with

R̃i j ~r !5^ui~x!v j~x8!&5e jab

]Rib~r !

]xa8
. ~7!

An equation for the temporal evolution of the energy a
helicity will involve third-order tensors of the type

f i j l
(u)~r !5^ui~x!uj~x!ul~x8!&,

f i j l
(uuv)~r !5^ui~x!uj~x!v l~x8!&,

and

f i j l
(vuu)~r !5^v i~x!uj~x!ul~x8!&.
e-
-

,
,
e

,

-
t
r
o
-

e

n

h

It can be shown that, as for the second-order tensor, only
basic functions remain to define the first two third-order te
sors which are symmetric in their first two indices, usi
again incompressibility@i.e. , ]f i j l

(u)(r )/]r l50#. We thus de-

fine the two functionsk(r ) and ã(r ) as

fLLL
(u) ~r !5^uL~x!uL~x!uL~x8!&[ū3k~r !, ~8!

fL23
(u) ~r !5^uL~x!u2~x!u3~x8!&[2ū3eL23ã~r !, ~9!

whereã(r ) is a pseudoscalar function. Thus

f i j l
(u)~r !/ū35

k2rk8

2r 3 r i r j r l1
2k1rk8

4r
~r id j l 1r jd i l !

2
k

2r
r ld i j 1

ã

r 2 ~r je l im2r ie j lm!r m . ~10!

All terms in Eq.~10! but the last one are standard@14#, and
the presence of skew-isotropy leads to the introduction in
expression forf i j l

(u)(r ) and f i j l
(uuv)(r ) of antisymmetric ten-

sors, thus proportional to the unit alternating tensor.
Defining the tensorf i j l

(vuu)(r ), on the other hand, is
slightly more complex since it is not symmetric in its fir
two indices; one first writes@16#, following for example the
approach of Robertson@17#:

f i j l
(vuu)~r !5E(v)~r !r je l imr m1F (v)~r !r ie j lmr m

1G(v)~r !r le i jmr m1Ã(v)~r !r i r j r l

1B̃(v)~r !r id j l 1C̃(v)~r !r jd i l 1D̃ (v)~r !r ld i j ,

~11!

where again the functions noted with a tilde symbol a
pseudoscalars. Using incompressibility, one can show
one first needs to introduce two new functionsk̃(vuu)(r ) and
a (vuu)(r ) defined similarly as in~8! and ~9!, but for
f i j l

(vuu)(r ). On the other hand, for that same tensor, two m
basic functions, respectively taken to be proportional
f23L

(vuu)(r ) and f2L2
(vuu)(r ), are now necessary to fully defin

the coefficients of the tensor, namely,

f23L
(vuu)~r !5^v2~x!u3~x!uL~x8!&[c3e23Lb~r !, ~12!

f2L2
(vuu)~r !5^v2~x!uL~x!u2~x8!&[c3q̃~r !, ~13!

wherec35ū3/l 0 wherel 0 is a characteristic length scale; i
this manner, all functionsk̃(vuu), a (vuu), b, and q̃ are di-
mensionless.

With these new functions required in the definitions
helical tensors, the possibility arises that new scaling re
tionships emerge that maya priori be different from that of
the fully isotropic case, and the question arises as to
relevance of such new scaling laws.

III. DYNAMICS OF HELICAL FLOWS

Note first that in the evolution equation of the veloci
correlation tensorRi j (r ), the fact of taking into account the
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presence of helicity in the flow does not result in altering
4/5 and 4/3 laws, because helicity involves nondiago
terms of the energy tensor, and the energy equation of co
deals with the trace ofRi j (r ). We now move on to the dy
namics of helicity in turbulent flows. One simply writes a
equation for the temporal evolution of the sca
^dui(r )dv i(r )& starting with the incompressible Navie
Stokes equation, whereP is the pressure andn is the viscos-
ity

] tui~x!52]xj
@uj~x!ui~x!#2]xi

P~x!1n¹2ui~x!,
~14!

with ]xi
ui(x)50, and where any partial derivative,]/]y say,

is denoted]y . Its version for vorticity obtains immediatel
taking its curl.

An equation for the structure functions of the velocity a
vorticity is then deduced using homogeneity and the fact
the positionsx andx8 are independent variables, viz.,

] t^dui~r !dv i~r !&1] r k
^duk~r !dui~r !dv i~r !&

5
1

2
] r k

^dvk~r !@dui~r !#2&12n] r k
] r k

^dui~r !dv i~r !&

24n^]xk
v i~x!]xk

ui~x!&. ~15!

The above equation can be simplified, using the hypo
esis of skew isotropy, leading to first-order tensors@18#
through a projection onto the longitudinal direction, whi
write

^duk~r !dui~r !dv i~r !&5
r k

r
^duL~r !dui~r !dv i~r !&,

~16!

^dvk~r !@dui~r !#2&5
r k

r
^dvL~r !@dui~r !#2&. ~17!

Note that it is useful to write the last term in Eq.~15! as

2 4
3 ] r k

( ẽr k) using ẽ5n^]xk
v i]xk

ui& where

ẽ52ḢV ~18!

is the rate of transfer of helicity.
After projection, this leads for Eq.~15! to

] t^dui~r !dv i~r !&1S 2

r
1] r D ^duL~r !dui~r !dv i~r !&

5
1

2 S 2

r
1] r D ^dvL~r !@dui~r !#2&1S 2

r
1] r D

3@2n] r^dui~r !dv i~r !&#2S 2

r
1] r D F4

3
nẽr G . ~19!

Neglecting the first term in the left-hand side~lhs! of Eq.
~19! ~see, e.g.,@4#! and excluding the possibility that non
regular solutions atr 50 occur, a first integral of Eq.~19!
gives the desired relationship which now readily obtains
the inertial range, namely,
e
l
se

at

-

n

^duL~r !dui~r !dv i~r !&2
1

2
^dvL~r !@dui~r !#2&52

4

3
ẽr .

~20!

This equation is the main result of the paper. It involv
combinations of all the components of the velocity and v
ticity fields. Two different terms are present on the lhs, co
trary to the 4/5 and 4/3 laws; this stems from the fact that
nonlinearity in the vorticity equation can be decomposed i
two parts, advection and stretching; the first term in Eq.~20!
is similar to the energy law~1!, appearing as an advection b
duL of the helicity in terms of increments.

Note that for a Beltrami flow, the approach used to obt
this exact law, which relies on an evaluation of nonline
transfer, does not apply since any pressure gradient term
cels out upon averaging. In fact, with the condition of inva
ance of the Loitsianskii integralL;*0

`r 4f (r ), the energy
spectrum is constrained to behave in the large scalesk
→0) ask4 whereas the similar constraint on helicity is that
behaves ask6, indicating that at least in that case and at lar
scale, helicity is not maximal and flows are far from bei
Beltrami-like @19#. Moreover, as stated before, such flow
are unstable.

IV. COMPATIBILITY WITH THE VON KA ´ RMÁ N-
HOWARTH APPROACH

As mentioned in the Introduction, an earlier approach
arrive at an exact law in helical turbulence—that taken
@13#—consists of following the steps of the derivation of th
4/5 law of Kolmogorov, for which an essential intermedia
step is the derivation due to von Ka´rmán and Howarth
~VKH ! @20# of an equation, relating second and third ord
moments of the velocity. The two approaches are comp
ible, as already known for the 4/5 law of Kolmogorov, and
shown below for the helical case.

The VKH approach contrasts with the present one,
latter takingab initio a formulation with Galilean-invarian
expressions involving structure functions throughout. T
VKH equation for helical flows is derived in@13# in terms of
tensors involving only the velocity correlation function
without obtaining the equivalent of a 4/5 or 4/3 law for stru
ture functions in the helical case, because of the techn
difficulty of expressing third-order structure functions
terms of correlation functions, when keeping a formulati
that involves only the velocity, i.e. , in terms off i j l

(u)(r ) only,
instead of employing, as done here,f i j l

(uuv)(r ) andf i j l
(vuu)(r )

as well.
The VKH equation for helical flows can also be obtain

from Eq.~19!; one first simply develops the mixed~velocity,
vorticity! third-order structure functions in terms of correl
tion functions,

1

2
^dvL~r !@dui~r !#2&52fLLL

(vuu)14fLnn
(vuu) , ~21!

and

^duL~r !dui~r !dv i~r !&54~fLnn
(uuv)1fnLn

(vuu)1fnnL
(vuu)!

14fLLL
(vuu)12 fLLL

(uuv) , ~22!
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with no summation onn. The equation equivalent to VKH
but for helicity is now derived from Eq.~19!, proceeding in
two distinct steps:~i! express the temporal derivative
terms of correlation functions,

] t^duidv i&512] t^uiv i&2
2

r 2

]

]r
~r 3] tR̃LL!, ~23!

and note that] t^uiv i&522ẽ; and~ii ! in order to express al
nonlinear terms, use Eqs.~21! and~22! together with a rela-
tionship stemming from incompressibility, viz.,fnnL

(vuu)

52 1
2 fLLL

(vuu) . Taking now a first integral of the resultin
equation leads to

] tR̃LL~r !5
1

r
@2fLnn

(uuv)1fLLL
(uuv)12fnLn

(vuu)22fLnn
(vuu)#

12n
1

r 4

]

]r
F r 4

]R̃LL~r !

]r
G . ~24!

Equation~24! agrees with the equation derived in@13#:
indeed, one has to note that the nonlinear terms in the ri
hand side ~rhs! of ~24! can also be written as
(4/r 4)] r(r

3fL23
(u) ). In the inertial range, this becomes

2

r 4

]

]r
@r 3fL32

(u) ~r !#52
1

3
ẽ, ~25!

which leads to

fL32
(u) ~r !5^uL~x!u3~x!u2~x8!&52 ẽr 2/30. ~26!

It is thus shown that the above equations already derive
@13# and Eq.~20!, obtained in this paper, are equivalent@21#;
however, Eq.~26! does not write directly in terms of struc
ture functions as opposed to Eq.~20!.

Finally, note that it is unlikely that a law in termsonly of
longitudinal components, as in the 4/5 law of Kolmogoro
would arise for helicity since helicity involves all indices o
tensors, dissociating the two normal components, as ca
seen for example from the defining functionã(r ) needed in
order to specify the third-order velocity tensor.

V. CONCLUSION

In this paper we have derived an exact law for mix
velocity-vorticity third–orderstructure functions, based on
the conservation of helicity in turbulent fluids, and which
compatible with the derivation by Chketiani@13# of a law for
helical fluids in terms of velocity third-ordercorrelation
functions. This law may help explain the role of helicity
turbulent flows as can be studied in experiments, both in
laboratory and with numerical computations, the latter p
t-

in

,

be

e
r-

haps providing an easier access to vorticity, although th
are now proven techniques to probe the vorticity field, us
for example the acoustic scattering by vorticity@22# or four-
wire probe configurations~see@23# and references therein!.
This law also complements that derived for enstrophy a
involving as well the vorticity field, experimentally mea
sured by a vorticity probe comprising fourX wires @24#.

The exact laws~20, derived here! and ~26, derived in
@13#! put dynamical constraints on energy transfer to sm
scales, since it states that the mixed correlators between
locity and vorticity at third order~in fact, their difference!
must scale as the distancer. Note now that if we assume tha
dimensionally, the vorticity were to scale asu/r , Eq. ~20!
would give for the helical part of the flow ar 2 scaling for the
third-order structure function; this is of course dimension
nally consistent with the 4/5 scaling law sinceẽ;e/r . With
v;u/r , Eq. ~20! does corroborate the scaling of Eq.~26!.
The derivation of this law has involved several new fun
tions @see relations~9!, ~12!, ~13!#, the scaling of which
might be worth studying separately to see whether any s
dominant behavior arises.

The Batchelor analogy in MHD between vorticity an
magnetic induction—based on the similarity of the equat
for vorticity with Ohm’s law—seems to break down fo
structure functions built only either ondb or on dv : we
know already that at the level of spectra, the vorticity sp
trum is singular—were it not for viscosity, whereas the ma
netic energy spectrum is not singular@25,26#. The scaling of
the magnetic structure functions in statistically steady flo
has already been evaluated with direct numerical simulati
in two space dimensions@27#. It may be of interest to see
whether the scaling of velocity structure function
^@duL(r )#p& for p.3 is sensitive or not to helicity, using
Ỹ(r ) @defined as the lhs of Eq.~20!# as a length scale to
extend the range of power-law scaling. Futhermore, one m
analyze—either with experimental or with numerical data
the scaling of thepth-order helical fluxesỸp/3(r ). Indeed,
both for the passive scalar@28#, and for MHD @29#, it was
found that the fields built as powers of theflux of increments
of conserved quantities—as defined here for helicity—m
be scaling as for the velocity itself in neutral fluids, althou
the basic physical fields—temperature, or velocity and m
netic field—are more intermittent.

Thus, the law derived here, involving the helicity transf
rate in an exact relationship for structure functions, can be
some use in finding empirically the scaling laws that arise
turbulent fluids@30# and in studying the different regime
that may arise in helical fluids.
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