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Exact relationship for third-order structure functions in helical flows
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An exact law for turbulent flows is written for third-order structure functions taking into account the
invariance of helicity, a law akin to the so-called “4/5 law” of Kolmogorov. Here, the flow is assumed to be
homogeneous, incompressible and isotropic but not invariant under reflectional symmetry. Our result is con-
sistent with the derivation by O. ChkhetiddETP Lett.10, 808,(1996] of the von Kaman—Howarth equation
in the helical case, leading to a linear scaling relation for the third-order velocity correlation function. The
alternative relation of the Kolmogorov type we derive here is written in terms of mixed structure functions
involving combinations of differences of all components for both the velocity and vorticity fields. This rela-
tionship could prove to be a stringent test for the measuring of vorticity in the laboratory, and provide a
supplementary tool for the study of the properties of helical flows.

PACS numbes): 47.27.Gs, 47.27.Jv

I. INTRODUCTION 4_
(oUl(n)=— ger; 3
Turbulence, as studied in the laboratory and as observed
in geophysical and astrophysical flows, resists analysis, consy, (r) is the longitudinal component of velocity differences,
trary to critical phenomena where anomalous exponents %ith Su (r)=[u(x+r)—u(x)]-f andf =r/r. Hereafter, the
scaling laws can be computed using th_e renorrT“"‘I'Za‘t'o'gubscriptL denotes components of the field along the sepa-
group approach. In the context of |nterm|'ttency, hO\’V":'Ver’ration r; similarly, n stands for any of its two transverse
recent progress has been made for passive scalarand components, whereas the indices (2,3) are used when one

SaSS'V? vel\jlzf_(')[r)s f(;r .t_hebkl?hemanc d%namo Il'n magnetohtydr(f)heeds to differentiate between these two transverse compo-
ynamics( ) [2]; in both cases, the scaling exponents o nents. Indeed, starting from E@) and using the differential

Etr;J.Ctll"ef functlorjf$d§f]!neq beIO\Z CaT bgat cotmtputt.ed pertur- relationship between the fully longitudinal component of the
auvely for specified lorcing and velocily stalistics. velocity third-order structure function, and its mixed

.Th“% for the ﬂ.J”y nonlinear F’“’b"?m O.f a turbu[ent Ve longitudinal-transverse component, stemming from the
locity field, experimental and numerical investigations, as compressibilit condition viz U (r)5u2(r)>
well as phenomenological models, still play a prevalent role. P 3 y ! S L n
However, there are also exact laws, namely the so-called, a[r<5uL(r)>]/(9r, one arrves easily at Eql), in the case
“4/5" law of Kolmogorov [3] and the equivalent relatidd] of EPE fullblsotropy atszlsumpttljon: ; h i ¢
involving a functional of the total energy, advected by the € above exact laws derive irom the conservation o
longitudinal velocity incremendu, (see below. Both laws energy in t_he absef‘ce qf dISSIp-atIO!’l. An.ot.her invariant of the
show that the third-order structure functions of the velocity"'“”s‘Cld fluid equations is the kinetic helicifp]:

obey linear scaling relationships in the inertial range where

1
self-similarity holds. The latter law writes HV=§<u~ o), (4)
{(Su (r)[dui(r)]?)=— € (1) wherew=V Xu is the vorticity. This invariance is of a to-

pological nature, dealing with the knottedness of vortex lines
(where summation over repeated indices will be understooﬁs]'. The role of helicity has been reviewed 8. For mag-

— Ty o o etized fluids, helicity is known to be important in the large-
throughout the papgre=—E_ is the kinetic energy injec-  scale dynamo problerfv], and is also invoked in the study
tion (and transfer rate with EY=3(u?). We hereafter call of solar flares and coronal mass ejection: in neutral fluids, it
Eq. (1) the “4/3" law; it obtains rigorously from the Navier-  gjows the dynamics as exemplified[8i, and it also plays a
Stokes equation written in terms of averages for velocityygle in the evolution of hurricanes. Indeed, when helicity is

increments maximal, as measured by the rafic=(u- @)/ {u%){®?),
SUi(r)=U;(X+T1)— Ui (X), (2)  With [p|<1, and with a maximal state fdp|=1, the non-

linear terms of the Navier-Stokes equations cancel exactly

assuming homogeneity, isotropy, stationarity, and incomexcept for pressure. Note that such Beltrami flows wath
pressibility. One further concentrates on the inertial range oft | @ [9] are unstablgsee, for example(10]). More re-
turbulent flows where the dissipative terms can be neglecteaently, the role of helicity was also studied fi1] in the
The 4/3 law can also be derived starting from the 4/5 law ofcontext of drag reductiofl12]. Thus, the purpose of this
Kolmogorov which reads paper is to derive an exact law concerning third-orstenc-
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ture functionsfor helical flows, taking into account the pres- It can be shown that, as for the second-order tensor, only two
ence of this second invariant, namely helicity. Chket[d:3] basic functions remain to define the first two third-order ten-
derived the von Kanan—Howarth equation for the helical sors which are symmetric in their first two indices, using
case and deduced a linear scaling law for third-order correagain incompressibilityi.e. , 9¢{(r)/ar;=0]. We thus de-
lation function of the velocity. Our work was done indepen-fine the two functionk(r) anda(r) as

dently of the derivation if13], and we use a different route,

namely that of Antonizet al. [4], dealing directly with the M (1) =(u (x)u (U (x"))y=u3K(r), (8)
temporal evolution of structure functions. Such functions,
built on powers of the increments of the field components,
are particularly useful in the study of turbulent flows because
they allow for an elimination of the effect of large-scale mo- ~ .

tion such as sweeping: dealing with velocity differencesWherea(r) is a pseudoscalar function. Thus
they stress th¢presumably universpkmall-scale statistical ,

B{(r) = (U () U(X)Ug(X")y=— Ul p5a(r),  (9)

: " —  k—rk 2k+rk’
properties of such flows. ¢>i(j|)(r)/'~' ZTHW# T(ri5jl +1,6))
Il. KINEMATICS OF HELICAL FLOWS K e
The first steps of our derivation are of a kinematical na- B Er"sii + r_f(ris”m_riej'm)rm' (10

ture. With helicity, the structure of tensors differs from that
in the full isotropic case. For example, a third-order tensorAll terms in Eq.(10) but the last one are standdrt¥], and
can no longer be assumed to be symmetric in its first twdhe presence of skew-isotropy leads to the introduction in the

indices; indeed, the equation for helicity involves cross corexpression forg((r) and ¢{"”)(r) of antisymmetric ten-

relations between the velocity and the vorticity. sors, thus proportional to the unit alternating tensor.

We begin with the second-order energy tensy(r) Defining the tensorgi"(r), on the other hand, is
which, assuming homogeneity and skew isotropy, can belightly more complex since it is not symmetric in its first
written as[14] two indices; one first writefl16], following for example the

- approach of Robertsdi.7]:
(Ui U (x"))=F(r)rir;+G(r) &+ H(r)ejkre, (5 o o o
) =EY(0)r€imt mt FY(r)riegmr
wherex' =x+r ande; is the unit alternating tensor. Helic- i (r) (1Y €imPm (DFi€jim" m

ity is included through the term proportionalitt(r), a pseu- + G €l m+ A (1)1

doscalaf 15]. Using incompressibilityi.e. , dR;;(r)/dr;=0], _ - _

it is well known that in the helical case, two defining func- +B(r)r 8 +C@(r)rys +D(r)r, 5,
tions remain, linked to energy and helicity. Hence, one can (12)

also write[14]
(1) where again the functions noted with a tilde symbol are
. i ~ doscalars. Using incompressibility, one can show that
Rij(D/U2=F(r) 8+ —5—Pii (1) + e (re/)a(r),  (6)  PS€Y » ON¢
! ! 2 Tk one first needs to introduce two new functidd$""(r) and
a(®W(r) defined similarly as in(8) and (9), but for

where a prime symbol in a function denotes a derivative with’, (,uy)
respect tor; as usuaIPij(r)=6ij—(rirj)/rz is the incom- @i (r). On the other hand, for that same tensor, two more

ressibility projector,u?f(r) the longitudinal correlation basic functions, respectively taken to be proportiongl o
pressibiiity projector, u™t| L .g . ¢(2‘§t‘“)(r)_a_md #589(r), are now necessary to fully define
function of the velocity withu®= 3(u*); one also introduces the coefficients of the tensor, namely,

a new functiong(r) with
_ L ¢5a (1) =(w,(X)Us(X)UL (X)) =Cae2a B(T), (12)
Roa(r) =rH(r)epa =u’epy g(r).

(wuu) — "N\ =~y
A similar definition holds for the helicity tensor, with a2 (N=(w(Xx)u (x)ux(x"))=csq(r), (13

_ IRy (1) wherec;=u®/, where/, is a characteristic length scale; in
Rij(r):<ui(x)wj(x/)>:fjabT- (7)  this manner, all function&(“"¥, (" g andq are di-
a mensionless.
An equation for the temporal evolution of the energy and With these new functions required in the definitions of
helicity will involve third-order tensors of the type helical tensors, the possibility arises that new scaling rela-
tionships emerge that may priori be different from that of
q,‘)i(ﬁ)(r)=<ui(x)uj(x)u|(x’)), the fully isotropic case, and the question arises as to the

relevance of such new scaling laws.
i (1) = (U () (V@i (X)),

and IIl. DYNAMICS OF HELICAL FLOWS

(ouy) , Note first that in the evolution equation of the velocity
Biji " (1) = (i) u;)u (X)) correlation tensoR;;(r), the fact of taking into account the
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presence of helicity in the flow does not result in altering the 4.

4/5 and 4/3 laws, because helicity involves nondiagonal (duL(r)éu;i(r)dwi(r))— 2(5w|_(f)[5u (N1%)=- €

terms of the energy tensor, and the energy equation of course (20)

deals with the trace doR;;(r). We now move on to the dy-

namics of helicity in turbulent flows. One simply writes an This equation is the main result of the paper. It involves

equation for the temporal evolution of the scalarcombinations of all the components of the velocity and vor-

(6ui(r)dwi(r)) starting with the incompressible Navier- ticity fields. Two different terms are present on the lhs, con-

Stokes equation, wheRis the pressure andis the viscos-  trary to the 4/5 and 4/3 laws; this stems from the fact that the

ity nonlinearity in the vorticity equation can be decomposed into
) two parts, advection and stretching; the first term in §)

iU (X) = =, [u; () Ui () ] = 95 P(X) + vV 7ui(x), is similar to the energy laWd), appearing as an advection by
(14)  su, of the helicity in terms of increments.

, ) L Note that for a Beltrami flow, the approach used to obtain
with 4, ui(x) =0, and where any partial derivativédy say,  this exact law, which relies on an evaluation of nonlinear
is denotedd, . Its version for vorticity obtains immediately transfer, does not apply since any pressure gradient term can-
taking its curl. cels out upon averaging. In fact, with the condition of invari-

An equation for the structure functions of the velocity andgnce of the Loitsianskii |ntegra£ f r4f(r) the energy
vorticity is then deduced using homogeneity and the fact tha§pectrum is constrained to behave in the large scates (
the positions< andx’ are independent variables, viz., —0) ask* V\ghereas the similar constraint on helicity is that it

behaves ak®, indicating that at least in that case and at large

(Ui (1) 6w;(r))+ Jr (SUk(r) 8Ui(r) Swi(T)) scale, helicity is not maximal and flows are far from being
Beltrami-like [19]. Moreover, as stated before, such flows

a,k<5wk(r)[5ui(r)]2)+2va (ui(r)Swi(r)) are unstable.

T

—41(3y ;(X)dy Ui(X)). (15) IV. COMPATIBILITY WITH THE VON KA ~RMAN-
“ “ HOWARTH APPROACH

The above equation can be simplified, using the hypoth- - As mentioned in the Introduction, an earlier approach to
esis of skew isotropy, leading to first-order tensgi$]  arrive at an exact law in helical turbulence—that taken in

through a projection onto the longitudinal direction, which [13]—consists of following the steps of the derivation of the

write 4/5 law of Kolmogorov, for which an essential intermediate
; step is the derivation due to von Kaan and Howarth
. . ) )
(8u (1) 8u;(r) Sw;(r))= T(5UL(f)5Ui(r)5wi(f)>, (VKH) [20] of an equation, relating second and third order

moments of the velocity. The two approaches are compat-
(16)  ible, as already known for the 4/5 law of Kolmogorov, and as
shown below for the helical case.

The VKH approach contrasts with the present one, the
latter takingab initio a formulation with Galilean-invariant
expressions involving structure functions throughout. The
Note that it is useful to write the last term in E(@5) as VKH equation for helical flows is derived irL3] in terms of
- éﬂrk(’;fk) USingE=V<ﬂkai3kai> where tensors involving only the velocity correlation functions,

without obtaining the equivalent of a 4/5 or 4/3 law for struc-

(18) ture functions in the helical case, because of the technical
difficulty of expressing third-order structure functions in

terms of correlation functions, when keeping a formulation

Ik
<5wk(r)[5ui(r)]2>:T<5wL(r)[5ui(r)]z>- 17

P

is the rate of transfer of helicity.

After projection, this leads for Eq15) to that involves only the velocity, i.e. , in terms @) (r) only,
instead of employing, as done herﬂ“”‘”)(r) and B (r)
2 as well.
F du;(r) dwi(r))+ PR (duL(r)éui(r) dwi(r)) The VKH equation for helical flows can also be obtained

from Eq.(19); one first simply develops the mixddelocity,
vorticity) third-order structure functions in terms of correla-
tion functions,

2 2
F"‘ar <5“)L(r)[5ui(r)]2>+<r+f7r

"2

X[ 208, 8u;i(r) Swi(r))]— §u2r . (19 %(mL(r)wui(r)]Z):2¢<L“ﬁ“L“>+4¢(w““> (22)

2
~+4,
r

Neglecting the first term in the left-hand sifdbs) of Eq.  and
(19 (see, e.g.[4]) and excluding the possibility that non-
regular solutions at=0 occur, a first integral of Eq(19) (8UL(r) 8U;(r) Sw;(r))=4( HlUue) 4 pleut) 4 gplouu)y
gives the desired relationship which now readily obtains in (wuy) ()
the inertial range, namely, tAp T2 o, (22
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with no summation om. The equation equivalent to VKH haps providing an easier access to vorticity, although there
but for helicity is now derived from E¢19), proceeding in  are now proven techniques to probe the vorticity field, using
two distinct steps:(i) express the temporal derivative in for example the acoustic scattering by vortidiB2] or four-
terms of correlation functions, wire probe configurationgsee[23] and references thergin
This law also complements that derived for enstrophy and
29 5 = involving as well the vorticity field, experimentally mea-
d{OUidwi)=+2dUijw)) = 7 —(r*aRL1), (23 sured by a vorticity probe comprising fodrwires [24].

The exact laws(20, derived hereand (26, derived in
and note thab(U;w;) = — 2 and(ii) in order to express all [13]) put _dynamlcal constraints on energy transfer to small
nonlinear terms, use Eq&1) and(22) together with a rela- scales, since it states that the mixed correlators between ve-
tionship stemming from incompressibility viz.¢(‘"“”) locity and vorticity _at third ordei(in fact,_thelr differencg

’ nnL
— _ 14 Taking now a first intearal of the resultin must sc_ale as the dlstarjpd\lote now that if we assume that,
27LLL 9 9 9 dimensionally, the vorticity were to scale agr, Eq. (20)
equation leads to would give for the helical part of the flowrg scaling for the
third-order structure function; this is of course dimension-
(uuw) (Uuw) (wuu) _

~ 1
RN = T [2¢00n" + LLL"+ 2¢n0n 2¢(on] nally consistent with the 4/5 scaling law sinee e/r. With
w~ulr, Eq. (20) does corroborate the scaling of EHZ6).
The derivation of this law has involved several new func-
. (24)  tions [see relations(9), (12), (13)], the scaling of which
might be worth studying separately to see whether any sub-

Equation(24) agrees with the equation derived 83 ~ dominant behavior arises.

indeed, one has to note that the nonlinear terms in the right- 1he Batchelor analogy in MHD between vorticity and
hand side (thg of (24) can also be written as Magnetic induction—based on the similarity of the equation

(4/r4)(9r(r3¢(l_uz)3)_ In the inertial range, this becomes for vorticity wi'th Ohm’s Iaw—;eems to break down for
structure functions built only either ob or on dw : we
2 J_, W know already that at the level of spectra, the vorticity spec-
2o oL ]=—3e (25 trum is singular—were it not for viscosity, whereas the mag-
netic energy spectrum is not singu[@5,26. The scaling of
which leads to the magnetic structure functions in statistically steady flows
has already been evaluated with direct numerical simulations
¢(L“3)2(r)=(u,_(x)ug(x)uz(x’))= —er?/30. (26)  in two space dimension®7]. It may be of interest to see
whether the scaling of velocity structure functions
It is thus shown that the above equations already derived iff su (r)]P) for p>3 is sensitive or not to helicity, using
[13] and Eq.(20), obtained in this paper, are equivaléRl];  G(r) [defined as the |hs of Eq20)] as a length scale to
however, Eq(26) does not write directly in terms of struc- gytend the range of power-law scaling. Futhermore, one may
ture functions as opposed to EQO). analyze—either with experimental or with numerical data—

Finally, note that it is unlikely that a law in ternmly of . . Soi3
I : the scaling of thepth-order helical fluxesy®(r). Indeed,
longitudinal components, as in the 4/5 law of Kolmogorov, both for the passive scalfeg], and for MHD [29], it was

would arise for helicity since helicity involves all indices of und that the fields built as powers of thex of increments

tensors, dissociating the two normal components, as can %% conserved quantities—as defined here for helicity—may

seen for example from the defining functiaifr) needed in g gcaling as for the velocity itself in neutral fluids, although
order to specify the third-order velocity tensor. the basic physical fields—temperature, or velocity and mag-
netic field—are more intermittent.

V. CONCLUSION Thus, the law derived here, involving the helicity transfer
rate in an exact relationship for structure functions, can be of
some use in finding empirically the scaling laws that arise for
turbulent fluids[30] and in studying the different regimes
that may arise in helical fluids.

19

+2v—7 —|r
Y ar

43~RLL(f)
ar

In this paper we have derived an exact law for mixed
velocity-vorticity third—orderstructure functions, based on
the conservation of helicity in turbulent fluids, and which is
compatible with the derivation by Chketigri3] of a law for
helical fluids in terms of velocity third-ordecorrelation
functions. This law may help explain the role of helicity in
turbulent flows as can be studied in experiments, both in the We are thankful for the partial financial support we re-
laboratory and with numerical computations, the latter perceived from Programme National, CNRS PCMI, and PNST.
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